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ABSTRACT

The elastic curve for a uniform continuous beam, simply re-
strained to have zero deflection at four or more equidistant points,
satisfies a second order linear finite difference equation. The
general solution for the elastic curve is found to be the sum of a
decreasing wave and an increasing wave. By a combination of these,
the elastic curve produced by moving any one support point is obtained,
including the cases where the support point which is moved is at one
end or near one end. These results are useful in obtaining a logical
procedure for correcting supersonic nozzles.
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support points, the right member of equation (1.1) is a linear function
of X. Hence,

Theorem 1. The deflection y is continuous with continuous slope
and curvature (Y' and YN). and each segment between supt point.
ie a cubic.

DERIVATION OF THE DIFFRENCE EQJATION

Let the deflection of the beam be zero at four successive support
points., pis P2 P3 P4' and take individual axis systems (xi, yi) for

the three included segments of the elastic curve*

yl y2  Y3

Figure 1.,

Then, since each sepent is a cubic which vanishes at its origin,
the equations of these sepente are

Yi A 3 + i 2
inAix +Biz2 + Ci xi, i - , 2, 3

Continuity at P2, P3 , and P4 gives three equations found by letting
xi-l.

(2.1) A,*B + CI-O

A2 + B2 + C2  0

A3 + B3 + C3 -0

Continuity of y' and y" at P2 and P3 give

(2.2) 3A 2B *CinC2

3A2 + 2B2 + C2 - C3

6 + 2B, a 2B2

6A 2B2 - 2B3
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These seven equations for nine unknowns leave two degrees of
freedom. The elastic curve would be completely determined, for example,
if the slopes were prescribed at both ends P1 and P. From seven equa-

tions we can eliminate six unknowns and obtain a single equation in the
remaining three. In this manner, it is found as a consequence of the
seven equations (2.1) and (2.2) that

(2.3) A 4A2 +A 3 0

B1  2 B3 -o

CI + 42 + C 3 O

Since the moment is

Mi - EIyi* - EI(6Aixi + 2Bi )

and hence the moment at xi -0 i Mi a 2BiEI , it follows that

M +4M +M3"O

which is the well-known "three-moment equation". Similarly, by letting
xi 1 , we get

M+ 4M3 # M4 -

y

x+1

- x+2 '

Figure 2
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If we form the function

(2.4) y(x+2) + Jj(xel) * y(x)

involving heights at corresponding points in three successive segments,
this may be written

y 3 (b)+ 4Y2 (b)+ yl(b) - (A3 + 4j2A A1 )b 3 + (B3+ 4B2 * B1 )b 2+ (C3 + 4C24C.1)b

which vanishes on account of equations (2.3) for all values of b in the
range 0 & b 1l. Hence, the expression (2.4) is zero for any x in the
interval P1 - P2.

Since y(x) is of class C", the first and second derivative of the
expression (2.4) also vanishes. Moreover, if the elastic curve has
zero deflection at more than four successive support points, it is
evident that the same expressions vanish everywhere on any portion of
the elastic curve in this region. Hence, we get

Theorem 2. If a uniform continuous beam is simply supported at
the supprt points x-a. a+l, • . •., a + n, wAt nk3 an has zero

deflection at all these support points, then the deflection y(x) satis-
fies the in ite difference equation

(2.5) y(x+2)+ 4y(xl y(x) - o

in the closed interval afx&a+n.

y

a a+l a+2 a+3

Figure 3

Since y(x) is of class C" in this interval, equation (2.5) may be
differentiated twice to yield the results:

Theorem 2a. The functions y'. y" and hence the slopea, curvatures
and moments satisfr also the same difference equation.

r
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SOLUTION OF THE DIFFERENCE EQUATION

It is intuitively evident that the elastic purvI of n (Qt3) segments
through n * 1 support points where the deflection is zero is uniquely de-
termined by prescribing slopes at both ends; hence, there is a two-para-
meter family of such elastic curves. Let us investigate how this appears
mathematically. The difference equation

y(x42) + 47(x.l) + yx) -

may be solved by letting

y(x) " pX,

whence y(x4l) - x*l . P , P - Py(x)

y(x+2) - P x+ . P2nP 2 x)

The difference equation then becomes

(3.1) p2 + 4 + 1 _ 0

which has the two roots

P -2 V73- -1/(2 + -_3) - -o.26795

1/p -- W-- -1/(2 - F- -3.7320

The solution of a linear homogeneous difference equation is not
unique. For it is easy to check that if P(x) is any periodic function
of period unity,

P(x+l) - P(x)

and if y - f(x) is a solution of the difference equation

y(x+2) + IW(x+l) + y(x) - 0
then

y - P(x) . f(x) is also a solution. (This is the analog to
the theorem in linear homogeneous differential equations that any constant
times a solution is a solution).

When this result is applied to the continuous beam problem in
interval, a-x~a + n, we conclude that the solutions y(x) - P(x)p or

P(x)/p 1 must be cubics in any segment between successive intergers.

We therefore get the result:

Theorem 3. In any interval of n segments (n-3) of an elastic curve
where the deflection vanishes at every support point, o Cerllcuos 'inis
a lInear cominauon or an IncreasIng "wave-, 7txFLj - pykxj, ana a

9
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decreasing "wave" with y( -~l) a

yF 1 u )

Figuze 4s

General solution is C 37(x) + CIYll(X).

Since I P I a 1/4 apprpximately the decreasing "wave" decays to
about 0.1% of its initial amplitude in five intervals, and hence can
be considered to vanish for most engineering applications in five or
less intervals.

THE TWO FUNDAMENTAL SOLUTIONS

It is convenient to make use of two solutions for the semi-in-
finite beam wi~h zero deflections at the support points x - 1,2,3, .... ,
and decaying toward infinity. The first fundamental solution has zero
deflection and unit slope at x - 0 (Figure 5a), while the second has
unit deflection and zero slope at the origin (Figure 5b). It will befound that the solutions of particular problems can be built up from
these fundamental solutions and their reflections, (Figures 5c and Id.).

4-Ze x x
(a)

3--

3PG 3P2G 33 PG 3 '3F

Figures 5
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The first fundamental solution satisfies the difference equation
over the entire range 0 Sx.Q) and hence is completely determined after
we find the function G for the2 first segment Oaxfl. The succeeding
segments are the curves 0 G, P G, etc. Thus, the deflection, slope,
and curvature at the right end of G ar& P times their initial values
to give continuity of these functions at x - 1.

Hence the cubic for G9

y- Ax3 + Bx2 + Cx + D,

satisfies the initial conditions

y(O) - D - 0

71(o) - Ca 1

and the continuity conAitions at x - 1 (after inserting values of C,D)

A+ B+ 1-0

3A + 2B + 1 -

6A + 2B - 2BP

These three equations are lineirly dependent; the solution of any pair
gives

(4.1) G Y )x - F3( 2 +

The second fundamental solution (Figure 5b) satisfies the difference
equation to the right of x - 1, so that the elastic curve to the right
of x- 1 is known to be - g G, where - g is the slope at x- 1. Thus for
the function H.

y - A + Bx2 + Cx + D

we have from initial conditions

y(0) -D 1

y,(0), -C -0

From continuity with -g 0 at x - 1 (inserting values of C,D)

y(l) - A+B+l- -G(O) - 0

y'(1) - 3A+2B - -gG'(O) w -g

y" (1) 602B -gG"(0) - 2gF3



5

By solving these we find that

(4.2) h - (3 V-- 4)x3 - U3- 3)x2 * i

and that

(4-.3) g - 6-3 T--3P
To find the reflected functions " and 7 referred to axes at their

left ends for convenience, it is only necessary to replace x by
(1 - x) in 4.1 and 4.2.

We get

(4-.4) ?(x) = G(l-x) - (-V'Y+ 1)x3 + (2F- 3)x2 + (2 - f)x

(4.5) T(x). H(l-x) - -(3V- Qx3 + (6C-- 9)x2 + (6 - 3/3

Putting the coefficients in decimal form, we have the equations

G(x) - 0°73205x3 - 1.73205x 2 * x

H(x) - 1.19615x3 - 2.19615x2 * 1

- -0.26795

g " 0.80385 - -HI()

Larger graphs of the functions G and H are given at the end of
this report.
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APPLICATION TO SEMI-INFINITE BEAM

A. End of semi-infinite beam given a deflection h and a slope X

Figure 6

The function

y - hH(x) + XG(x)

is easily seen to be the solution here, where H, G are extended beyond
x 1 19 as in Figure 5a and b. The slope at x - 1 is hH'(l)+XG'(l) - 3Ph P ,
hence, the second segment of Fig. 6 is (3h+X)PG, and the.nth segment is
(3h+X) 0n-ilo

When any 6ther Jack than the end Jack t moved in the semi-infinite
plate, the plate shape is the sum of a zero order approximation, curve
(0), and a first order correction, curve (1). Curve (0) is the elastic
curve which would be obtained in an infinite plate extending over the
range - 00 4x4W) curve (1) is the reflection of this curve at the fixed
end x 0 00 In the case of a finite length plate, treated in the next
section, the zeroth approximation, curve (0), is again the elastic curve
for an infinite plate- to this must be added an infinite number of re-
flections of curve (O. reflected from both ends of the actual finite
plate.

'
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SEMI-INFINITE BEAMS .

B. End of beam fixed at zero slope, support point at x - 1 raised
by h units.

(0 h1 hslope:-hg-3ph

3~h(1) i 3 2O

Figure 7

Curve (0) is composed of the fundamental solution H multiplied by the

ordinate h starting at x - 1 and decaying to the right; the reflection
function h1R extends to the left 6f x - 1 to the origin.

Curve (1) is -XG starting from the origin with a slope opposite
that of curve (1), where X - hg.

The sum of curves (0) and (1) is the complete solution.

Referred to axes at the left end of each segment, the equations
of the successive segments in the solution are

-- h [l(x 1 ) + 3PG(xl)]

y2 - h [H(x2 ) + 3P2G(x2)

yo h [3( 1.t2)fo(t

pn-3 3n-2(l 2)
Y3* h 3- h J ), for n,13o

i ,Clearly curve (1) can be considered to be the left wave hbN

of curve (0) Nreflected" at x 0 .

14k



SE1-IM NITE BEMS

C. L ft end of beam fixed, support at x m 2 raised by height h.

Figure 8

The solution is the sum of curves (0) and (1).

Again, curve (1) can be considered as the reflection of the "wave"
to the left of the origin in figure (8).

Successive segments referred to their own axis systems

" 3ph(*G)

Y2 " h(?*3P 3 0)

y* a h(H# 3 4O)

y1 4 474 - 3hp(-l p )G

n-44

'n'p' ln n 5p 6p . .

15



SEMI-INFINITE BEAMS

D. Support at x 3 raised.

( 0 ) 3 d3 hd3 
h

Figure 9

Successive sep. its

yl 3h(,pZ4p 3 G)

-3li(p4G)

Y3- hCRl+pG)

Y4- h(HI# 6G)

Y5 3Ph(1.p )G,

y~ ~ 0n - ~Sn6, 7,...

16



FINITE BEAM PROPLD(S WITHI FIXED ENDS

a. Tw pas

Common multipliers
19 hH for the powers of

P shown on the curves
(0)(Is(0Ms..

(1)( P3hG

(2) 3hG-

(3)____ 3hG

(5)___ 3hG

Figure 10
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Curve 1 is the first reflection from the left of curve 0; the sum
of these satisfies the zero slope condition on the left, but not on the
right. When the reflections 2 and 3 from the right of curves 0 and 1
are added on, the zero slope condition is satisfied on the right, but
not on the left. When the infinite series of reflections back and forth
are added, the exact solutions are obtained.

y hll(x 1 ) + 3Ph [b.*p 2 U4+6, .)G(x1)4 (pp 3+5+ . ~x~

- hTI(x) + 3ph(G.P1)/(l-p12 )

This illustrates a property which will be found to be true for
fized end beams with any number of spans:

Theorem: The four terms in the reflections 1. 2. 3. and I, for an
span will always be the first terms in four Reometric series of ratio

P n where n is the number of spans. Since

A + Ar +A 2 + Ar3 + . . . . - A/(l-r), for Ir l1

it is only necessay to add the zeroth order curve plus I/(l- 2n) times
the sum of the first four reflection curves 1. 2. in order to eet
the exact solution.

The second segment of the beam is found by adding its zeroth order

term +IA 1 - 4) times the terms in the reflections 1, 2, 3, and 4. In
terms of its own coordinate system.

-v2 hH(x 2 ) + 31h [( P3 I)G(x3 ) 4 (.1+P2)-¢(x 2)] /(_p4 )

or
2

Y2 - hH(x 2 ) + 3ph [Poyx)Zx 2 )] /(1-P 2

18
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FINITE BEAMS

b. Three-Span beam

0 3PhG Couuon multipliers

P P 3hG

3___P__P 3hG

4 P 56 P 73hG

Figure 21

In this diagram, common multipliers for the terms in the first four
reflection are placed at the right while only the proper powers of P
are placed on the corresponding segments.

The solution is

Y- h!(xl) + 3ph (lp)Gcx1 ) + (p3 +pS )(xl)] /(,_p6)

Y2 = *x2 3Ph LP+P 5)(2)+(P 2+P~1(x)]/
73 3phG(x3) + 3ph P * P6) G(x3) +(P +P 3)(x]/ (- 6 )

2)* C3ph -+ (3 +( , _6

2) F~x3 + p0(x2) ]/(,_p6)-3ph(1+p)

I1



c. Five-span Beam with Prescribed Initial Height and Slope

tan-(

,h

(0) (),+3h) ('+3 0 P 3(0i4h)0 12' I3h)G

( K 9 p .3~

______ I_____ ~S )(X*3h)U
Figure 12

The zero th order curve showm satisfies left end boundary conditions,,
hence only two reflections, curves 1 and 2, need be considered to get the
first terms of the infinite series (geometrical) and hence to obtain the
exact solution.

For the 5 span beam shown:

y- m hH + G P(X.3h) [P G + P8-G]

Y2- P(X+3h)G + P(X*3h) [P 100 + P U] /(l-p10) + P(X*3h) [G + P70] /(l- 10)

-3 nP ('X.3h) INa . / (i-p10 )

+ ~x3h) [G~ + P] / (1-p10)

20 -



REFLECTION FROM SIMPLY-SUPPORTED END

curvature - 0

M C curvature y"-k

(0) //:"

A curvature - -k

(1)

Figure 13

Suppose the zeroth order approximation ends with the terms mG, and
the reflection curve 1 ends with the terms 0; then in order that the
sum of curves 0 and 1 satisfy the boundary condition y" I 0, we must
have

mG'" (l)+A' '(l)-O

m(6 VF3- 6 - 2 Fi.+ g,(-6 " + 6 + 4f"- 6) - 0

Therefore JA - + k(end)/2 J3-

(4- 6)m/2/u-3 (2 -I), "- -Pm

Theorem: The reflection on the right hand end starts with k "/2
where k is the c rvatureAt the right on the zero order arcximatlion.
If the riiht of the zero order curve is mG then e riht end of thererlction curv is k-m U). he reflection fro a ,ip suorted enA
is with no c hange in sign of y, s'ince -0 is positive, The same theorem
hod a a'a simply supported left and, with the words left an riht and
the symbols a and U interchanged. ,

As a consequencej if the zeroth order approximation ends' in a

multiple of I (at the left) or a multiple of+. (on the rijht), the exact
solution has twice the end slope of the zero approximation.

The same principle of multiplying by -P instead of by P holds, of
course, for all the infinite series of reflections needed in a finite
beam with pin-supported (simply supported) ends.

21



see Fig. 114 for an example of a 3-span beam with the left end pin-
connected and the right end fixed.

3PhOc ouon
(0) m fultipliers

(1) 1P P 2h(6-3JI)O

(3) 5 4P 3h(6-343VU

(14) 3PhO

_________h(6-3 45)-G

(7)

Figum e14

22



y- hW.(6-3 f3) h E(i-P 6 + P 12 - _Spll.pl 7 -.

Again the first four reflection curvYes ay enough., but the geometric
series are alternatingwlth the ratio -PO; hence their first terms
must be divided by 1.P' to obtain their stus*

TURNE L. SMITH
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